Uncategorized

On multivariate Gaussian

Formulas

Formula for multivariate gaussian distribution

g1

Formula of univariate gaussian distribution

g2

Notes:

  • There is normality constant in both equations
  • Σ being a positive definite ensure quadratic bowl is downwards
  • σ2 also being positive ensure that parabola is downwards

 

On Covariance Matrix

Definition of covariance between two vectors:

g3

When we have more than two variable we present them in matrix form. So covariance matrix will look like

g4

  • Formula of multivariate gaussian distribution demands Σ to be singular and symmetric positive semidefinite, which in terms means sigma will be symmetric positive semidefinite.
  • For some data above demands might not meet

 

Derivations

Following derivations  are available at [0]:

  • We can prove[0] that when covariance matrix is diagonal (i.e there is variables are independent) multivariate gaussian distribution is simply multiplication of single gaussian distribution of each variable.
  • It was derived that shape of isocontours (figure 1) is elliptical and axis length is proportional to individual variance of that variable
  • Above is true even when covariance matrix is not diagonal and for dimension n>2 (ellipsoids)

g5

Linear Transformation Interpretation

g6

This was proved in two steps [0]:

Step-1 : Factorizing covariance matrix

g7

Step-2 : Change of variables, which we apply to density function

g8

 

References

[0] http://cs229.stanford.edu/section/gaussians.pdf